encourage biodiversity in plantations,
- diversification of species that are being planted, including natives,
- zero nutrient loss and soil erosion from plantation operations,
- zero use and discharge of toxic chemicals/pollution, and
- independent monitoring and certification of compliance with standards.

It is acknowledged that the industry is already making progress towards these, in particular the recognition that better planning is needed, along with the development of standards. Adapting a precautionary approach and planning for the long term is the key to protecting biodiversity.

Greenpeace believes the plantation industry has responsibilities to society as a land user, and urges the recognition of the multiple values of land and trees. For the industry to have credibility with environmental organisations, the consumer and society, a genuine openness to address the issues and independent monitoring and certification will be needed.

Note:
The Greenpeace review The Plantation Effect is available for $18 (incl. GST and P&P), from Greenpeace New Zealand, Private Bag 92507, Auckland.

References
Jackman, Gordon (1992). The Deadly Legacy - a report on the toxic contamination of New Zealand by the indiscriminate use of pentachlorophenol (PCP), Greenpeace NZ.
ton. 328 p.
ika. 72 p.
Rosoman (1994). The Plantation Effect - an ecoforestry review of the environmental effects of exotic monoculture tree plantations in Aotearoa/New Zealand. Green-
peace report, with support from Canterbury Manuia Society. 48 p.
ference on Environment and Development on behalf of the forest industries.
Spellerberg, Ian F. and John W.D. Sawyer. (1993). Biodiversity in Plantations - increasing levels and maintaining standards. A report to the Forestry Authority, UK. Centre for Environmental Science, University of Southampton. 209 p.
ment planning, and allows things like fragile environments to be linked with crop evaluation, with populations, with rainfall deficits, with potential forestry areas, with specific conservation needs and so on.

One of the real benefits from the system is that foresters can go back to their roots as such. They need no longer work in the tunnel vision syndrome of diameters and merchantable height. They can now look at a whole raft of natural environment and resource issues as part of forest development planning. They can also do this quickly and easily and produce computer-generated maps to illustrate the spacial links of different values. They can check soil fragility of potential development areas and frame management regimes to alleviate any potential problems or to enhance follow-up development. They can now look at steepness, associated relief and lithology and, in association with species occurrence, get some idea of machinery requirement and working methods. They do this because their whole planning system is strengthened and broadened with a solid factual base on which to monitor the effects of change and the performance of operators.

I have given this example because indigenous forest managers in New Zealand must also widen their outlook; to take off the blinkers, to pay more than lip service to a wide host of environmental factors and issues, to look at such things as soil fertility, erodibility, ecological relationships and to frame acceptable management practices that accommodate the constraints of these factors.

The Need for an Inter-Disciplinary Approach

Times are changing and New Zealand rightly abides by, and has been a major force in forming, international codes of conduct with regard to environmental issues and development. However, there is still internationally a difficulty in accepting the practicality of joint use. There is still a perceived need by various natural resource sectors to work independently. To isolate their activities from others. Hence foresters are isolated from the soil and land evaluation skills of agriculturists.

Some environmental organisations still wish to isolate all their activities from development issues. Agriculturists are not always benefiting from the knowledge of indigenous grassland management. This inherent compartmentalisation of natural resource issues belies the fact that maintenance of ecological viability and integrity of an environment is fundamental to long-term effective management.

The New Zealand Beech (Nothofagus) Example

Bodkin and Talbot (1992) have explained that in the past the concept of “conservation of biological diversity” simply means “protection from use”, whereas today the purpose should be “to ensure future capacity for use”.

Gover et al (1992) have argued that good sustained yield management practice is low-impact, high-tech and highly controlled, and all based on a sound knowledge of basic forest ecology with long-term planning horizons.

In the New Zealand context my company, Western Beech Ltd, have put to Government over the last few years a number of proposals for the management of the Southland beech (Nothofagus) forest based on the principles espoused above.

Planning for this has been done on a step-by-step basis with a series of checks and balances on the way.

I have illustrated a part of the process below to try to show how planning needs to be linked to a broader philosophy at one end of the scale and to operational aspects at the other.

In this process the rules of “maintenance of ecological viability” are paramount and are consistent referral benchmarks at which to test subsequent levels of planning.

Selected beech forests in New Zealand have always offered excellent prospects for sustained yield management. They have high growth volume rates, large lowland tracts of predominantly one or two commercial species, ready establishment, rapid seedling growth rates and timber properties highly suited to high-value end uses.

In the silver beech (Nothofagus menziesii) forests of Southland these prospects are even better if the special features of Southland silver beech are considered – its shade tolerance, its highly concentrated locations and the highly developed infrastructure of Southland. If ever a New Zealand beech management operation is to succeed, then it will succeed in the south.

However, factors limiting its past success are still apparent and must be considered as potential constraints of management in any future operations. These traditional constraints are listed as follows:

- low end prices in the domestic market;
- relative smallness of the resource in relation to international markets;
- inherent pathogen problems;
- distance from markets and associated high freight rates;
- the expense of harvesting in low-volume forest;
- the “traditional methods” syndrome of...
foresters and loggers alike;
• the apparent need to have machinery dictate harvest and silviculture practice;
• the lack of understanding of ecological relationships by loggers and forest managers.

All of the above constraints can, with a bit of vision and a change of attitude, be overcome.

Silver Beech Silviculture
On the positive side is the technical suitability of beech for ecological management. Silver beech is eminently suitable for single-tree and small-coupe-size harvesting techniques under the right market conditions. In its seedling and sapling stages it is a reasonably shade-tolerant species and, as such, well-established advance growth is usually present in natural forests.

This advance growth is persistent and there is a steady recruitment into the larger-diameter classes to maintain the forest in a mixed-age condition. At the same time the advance growth responds well to the opening of the forest canopy and reduced root competition, providing that excessive exposure does not occur. Growth in the younger stems is strongly apical, given some overhead shade. Once the whips achieve the height of the surrounding canopy stem, diameters increase rapidly and the diameter growth rate remains generally constant through to maturity.

The prime aim of management under a sustained yield system of management is, in simple terms, the identification and protection of the second and subsequent crops and, through this, the maintenance of the forest as an ecological entity. To harvest and yet protect the considerable volume of advance growth is expensive but operationally possible. Under the right market conditions such an operation can be technically feasible and economically viable.

The “cropping or cutting cycle” system is the system that best meets the ecological needs of beech and the maintenance of ecological viability. In brief, it means maintaining forest structure, harvesting an identified first crop, identifying a second merchantable crop and subsequent crops from the advance growth, and calculating the time required for this second crop to grow through to merchantable size. The latter is the cutting cycle period.

The questions that forest managers must answer as a part of the planning process are:
• Can the second and subsequent crops be recognised in the forest structure?
• Can harvesting of the first crop be done without destroying the second and subsequent crops?
• Will the second crop put on sufficient diameter growth to be of merchantable eating that indigenous timber produced without regard to the concepts of eco-forestry will not have a place in the world market within a few years and, by association, our own domestic markets as well. Moreover, the rapidly increasing international status of eco-based timber production and the marketing opportunities that are opening as a result herald an exciting phase for those with the vision and the skills to promote our green products.

In short, we either treat it properly or we do not get to use it. We have already gone well down the track with legislative controls as set out in the Forests Amendments Act 1993 (amending the Forests Act 1949) and we already have operators with vision. The challenge is now to put it all together and to make it work.

Conclusion
This paper just touches on some of the fundamental issues that affect management of Southland’s beech forests and in a broader sense the management of the whole of New Zealand’s indigenous forest estate.

It does not talk about marketing and project development, which is another of the fundamental keys to successful management, but I hope it does illustrate that management, and the long-term success of indigenous timber production, cannot be considered in isolation from the changing environmental attitudes of the international community.