I am of an age when it is mildly tempting to say yesterday was better than today. The summers were longer, the living was cheaper, and the flowers were brighter. Mildly tempting as it might be to reminisce about how it all was that much shinier and better “back in the day”, I am not sure I totally agree.

In a recent edition of the *Southern Hemisphere Forest Industry Journal*, we examined how forestry education in the southern hemisphere has to take a serious look forward rather than looking back and resting on its laurels. By its very nature, looking forward on forestry education also necessitates identifying trends for the future of forestry and forest industries.

Once upon a time (yes, this is something of a fairy tale) forecasting future forestry and forest industry developments seemed a simple task. When the Journal was launched in 1994, it was possible to forecast the billions of dollars required or planned to expand the industry to meet the expansion in plantation forest areas in each of the countries. Pine trees would be grown up to about 25-30 years, depending on location, with stands being thinned and pruned along the way. The big idea then was that the plantations were being grown for a future where thinnings and offcuts from logs would provide wood resource for the pulp and paper manufacturing plants expected to be dotting the landscape of tomorrow.

Note most consideration was given to pines, and mostly radiata pine, up until that stage. Eucalypts started to be planted in larger areas in Chile and Australia from the mid-1990s onwards.

The future facing forestry education was no less certain. Land would be prepared, trees planted, logs harvested, offcuts and woodchips would go to pulp and paper production, and the best wood reserved for sawmilling and conversion in to value added products. Okay, this summary may be a bit simplistic, but you get the gist.

Who would have thought then that much of forestry’s future would be focused on climate change and carbon credits? Or that China and other North Asia countries would overtake the wealth of United States as number one markets? Or that more and more of the wood resource would be harvested and shipped as raw logs to feed manufacturing plants in the northern hemisphere?

Of course, not all of these trends were totally unforeseen. In the depth of universities and other institutions, researchers had long been tracking changes in the earth’s climate. Marketing whizzes were also pushing for a greater focus on Asian markets, based on a combination of economic growth and population projections, and tightening supplies of tropical hardwoods.

So we have reached that point where forests are increasingly seen as just as valuable (if not more?) for their carbon output than their timber; where the suction generated by China’s development inhales the world’s resources; and where, in New Zealand at least, a half or more of all logs harvested are exported whole to feed the markets in other countries.

As we see in our articles, the world is also more “connected” as satellites and digital technology deliver a global view no matter where you are located. For forestry education, that means an increased focus on utilising technology at all levels of the sector.

You would expect youngsters entering tertiary institutes today would be ideally placed to make the most of the digital forestry future. Not necessarily so, according to Professor Jerry Vanclay from Australia, who says many people coming into forestry are more interested in rural life than life online. The computer skills they bring are more use for gaming rather than the kind of analytical approach required when searching for answers.

I can’t tell you what will happen in forestry in another 20 years time but no doubt there are clever people out there who may be able to give us a glimmer of the future. Are we listening?

*Micheal R. Smith (Mike)*

---

*Originally published in the *Southern Hemisphere Forest Industry Journal*, Volume 17 Number 4. See the full version of the issue at: www.southem.com or http://tinyurl.com/vol17no4*